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APPROXIMATE ESTIMATES OF THE HIGH-TEMPERATURE CREEP

OF STRUCTURAL ELEMENTS

UDC 539.374+376O. V. Sosnin and I. V. Lyubashevskaya

The creep and long-term strength of structural elements under temperatures much higher than oper-
ational temperatures are studied. The actual nonuniform stress–strain state is reduced to a fictitious
uniform state by averaging the specific dissipated power over the volume of the body. This allows one
to estimate the intensity of creep and long-term strength of structural elements in terms of volume-
averaged energy parameters by using methods of ideal plasticity and considering statically possible
stress fields and kinematically possible velocity and strain rate fields.

1. Basic Relations. We consider a uniformly heated body loaded by volume (Fi) and surface (Ti) forces.
For simplicity, external thermal and force parameters are assumed to be stationary. At high temperatures, the
stresses σij , creep-strain rates ηij , and specific dissipated power W = σijηij at each point of the body reach
stationary values in a short time. Since σij and ηij are related by an equation of the type ηeq = f(σeq, T ) (ηeq and
σeq are the equivalent strain rate and equivalent stress, respectively, which are functions of the invariants of their
tensors), the dissipated power can be expressed in terms of stresses W = Φ(σij) or creep-strain rates W = U(ηij) in
an invariant form. It is common practice to use the intensities of the corresponding tensors as equivalent quantities:

σeq = (3σ0
ijσ

0
ij/2)1/2, ηeq = (2η0

ijη
0
ij/3)1/2.

Here σ0
ij = σij − δijσnn/3 and η0

ij = ηij − δijηnn/3 are the deviator tensors (η0
ij = ηij for plastic incompressibility).

At any point of the body, one can determine the dissipated power W = Φ(σij) or W = U(ηij) and study the
effect of external force parameters on W in the space of stresses or strain rates. In particular, if the dissipated power
remains unchanged, Φ(σij) = const and U(ηij) = const in the corresponding spaces are determined by surfaces of
constant dissipated energy. Assuming that the surfaces are convex, we obtain the Mises criterion

(σij − σ∗ij)ηij > 0 or (ηij − η∗ij)σij > 0, (1)

and vice versa, inequalities (1) imply that the surfaces Φ(σij) = const and U(ηij) = const are convex. In the theory
of steady creep, these surfaces play the same role as the yield surface in the theory of ideal plasticity [1, 2].

We express the dissipated power averaged over the volume of the body in terms of stresses or strain rates:

W 0 =
1
V

∫
V

σijηij dV =
1
V

∫
V

Φ(σij) dV = Φ(σ̂ij),

(2)
or

W 0 =
1
V

∫
V

σijηij dV =
1
V

∫
V

U(ηij) dV = U(η̂ij).

If the points A(σ̂ij) and B(σ̂∗ij) corresponding to the average stress state of the body lie on the surface Φ(σ̂ij) = const
in the stress space, the stress states σ̂ij and σ̂∗ij can refer to different physical points of the body (this is also true for
the strain rates η̂ij and η̂∗ij in the strain-rate space). In [3–7], a so-called characteristic point is used in approximate
calculations of structural elements in creep. (It is assumed that there exists a point whose stress–strain state
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characterizes the behavior of the entire structure.) Thus, it is expedient to consider a “characteristic stress or strain
rate,” which gives integral estimates of the stress–strain state of the whole body for a chosen measure, say, the
average dissipated power rather than the “characteristic point,” which is not a fixed point in the body as was shown
in [3–7].

We assume that the surfaces Φ(σ̂ij) = const and U(σ̂ij) = const are convex and the Mises criterion (1) is
valid for the averaged values of σ̂ij and η̂ij :

(σ̂ij − σ̂∗ij)η̂ij > 0, (η̂ij − η̂∗ij)σ̂ij > 0. (3)

Using statically possible stresses and kinematically possible strain rates in relations (2) and (3), one can estimate
approximately the intensity of creep processes and long-term strength of a structural element in the average over
its volume.

Statically Possible Stress Fields. Let the volume external loads Fi and surface external loads Ti produce
the stresses σij , displacement velocities vi, and corresponding strain rates ηij in the body. Equating the powers of
external and internal forces, we obtain

1
V

( ∫
V

Fivi dV +
∫
S

Tivi dS

)
=

1
V

∫
V

σijηij dV = Φ(σ̂ij). (4)

We consider statically possible stresses σ∗ij that satisfy the equations of equilibrium, boundary conditions,
and additional condition of constant average dissipated power W 0:

W 0 =
1
V

∫
V

Φ(σ∗ij) dV = Φ(σ̂∗ij),

i.e., the points A(σ̂ij) and B(σ̂∗ij) in the stress space lie on the surface Φ(σ̂ij) = const that corresponds to the true
value of the average dissipated power W 0. From the viewpoint of classical mechanics, this means that the surface
Φ(σ̂ij) = const is the ideal constraint. The points in the stress space that correspond to the stress state cannot
leave this surface. For the transition from the point A(σ̂ij) to the point B(σ̂∗ij), the virtual-work principle yields

η̂ijδσ̂ij =
1
V

( ∫
V

δFivi dV +
∫
S

δTivi dS

)
. (5)

Substituting the expressions δσ̂ij = σ̂∗ij − σ̂ij , δFi = F ∗i − Fi, and δTi = T ∗i − Ti, into Eq. (5) and taking
into account (3), we obtain ∫

V

F ∗i vi dV +
∫
S

T ∗i vi dS 6
∫
V

Fivi dV +
∫
S

Tivi dS. (6)

Hence, statically possible stresses that satisfy the condition of constant average dissipated power correspond
to smaller external loads compared to the actual stresses. In particular, if the external loads are reduced to the

generalized force Q and q̇ is the corresponding generalized velocity
( ∫
V

Fivi dV +
∫
S

Tivi dS = Qq̇
)

, we obtain the

lower bound of the external forces Q∗s 6 Q as in the case of ideal plasticity.
Kinematically Possible Strain-Rate Fields. In addition to the actual fields of stresses σij , velocities vi, and

strain rates ηij , we consider a kinematically possible velocity field v∗i , which is assumed to be continuous and
differentiable to obtain a kinematically possible strain-rate field η∗ij . Moreover, we require that the kinematically
possible field η∗ij satisfies the condition of conservation of the average dissipated power W 0 = U(η̂∗ij) = const
corresponding to the true values of σij and ηij . In this case, relations (2) imply that the stress field σ∗ij corresponding
to η∗ij also satisfies the condition W 0 = Φ(σ̂∗ij) = const, i.e., the point C(σ̂∗ij) in the stress space lies on the same
surface Φ(σ̂ij) = const as the point A(σ̂ij) with true values of stresses. However, the quantities σ∗ij and η∗ij correspond
to different external loads F ∗i and T ∗i and velocities v∗i , i.e., we obtain the equation

1
V

( ∫
V

F ∗i v
∗
i dV +

∫
S

T ∗i v
∗
i dS

)
=

1
V

∫
V

σ∗ijη
∗
ij dV = Φ(σ̂∗ij) (7)

instead of (4). Since Φ(σ̂∗ij) = Φ(σ̂ij), the left sides of Eqs. (4) and (7) are equal.
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Let δσ̂ij be the displacement from the point of the possible state C(σ̂∗ij) to the point of the actual state
A(σ̂ij) over the surface W 0 = Φ(σ̂∗ij) = const (ideal constraint).

Similarly to (5), we obtain

η̂∗ijδσ̂ij =
1
V

( ∫
V

δFiv
∗
i dV +

∫
S

δTiv
∗
i dS

)
. (8)

Substituting δσ̂ij = σ̂ij − σ̂∗ij , δFi = Fi − F ∗i , and δTi = Ti − T ∗i into Eq. (8), with allowance for (3), we have∫
V

Fiv
∗
i dV +

∫
S

Tiv
∗
i dS 6

∫
V

F ∗i v
∗
i dV +

∫
S

T ∗i v
∗
i dS =

∫
V

Fivi dV +
∫
S

Tivi dS. (9)

Thus, kinematically possible fields of displacement velocities and strain rates that satisfy the condition of
constant average dissipated power correspond to higher external loads compared to the actual fields. Inequality (9)
can also be formulated as follows: for kinematically possible velocities v∗i , actual external loads Fi and Ti give a
smaller value of the average dissipated power compared to the actual velocities vi, i.e., the loads F ∗i and T ∗i must
exceed the actual loads to ensure the same value of W 0. In this formulation, inequalities (6) and (9) are similar
to the principles of minimum power and minimum complementary dissipation in the theory of steady creep [1, 8].
Moreover, if the external loads are reduced to the generalized force Q and the corresponding generalized velocity q̇,

for example,
∫
V

Fiv
∗
i dV +

∫
S

Tiv
∗
i dS = Qq̇∗ and

∫
V

F ∗i v
∗
i dV +

∫
S

T ∗i v
∗
i dS = Q∗k q̇

∗, we obtain the upper bound of

external forces Q 6 Q∗k. As in the case of ideal plastic structures, we estimate the lower and upper bounds of
external loads:

Q∗s 6 Q 6 Q
∗
k. (10)

These estimates of external loads can be used, for example, in technological problems of material process-
ing by pressure under creep and superplasticity conditions, where only information on the power of production
equipment is needed, and exact values of stresses and strain rates in a workpiece are out of interest.

In contrast to the problems of ideal plasticity, where it is usually required to determine limit external loads
acting on a structural element and obtain the upper and lower bounds of these quantities, another class of problems
is of interest in applied problems of creep, where the intensity of creep with a certain measure and the rupture time
of the structural element should be estimated for given external loads. In the energy variant of creep [9, 10], the
specific dissipated power W = σijηij is used as a measure of intensity of the process, and the dissipated specific

energy A =

t∫
0

σijηij dt is used as a measure of damage of the material. It is shown that the rupture time t∗ of the

material in creep is inversely proportional to the quantity W at the steady stage of the process: Wlt
∗
l = Wnt

∗
n. This

is experimentally supported for a uniform stress–strain state of a number of structural materials under stationary
and nonstationary external conditions in a wide range of thermal and force parameters. Assuming that these
statements are satisfied “in the average” for structural elements with a nonuniform stress–strain state, from the
above-given inequalities of the type (10), we obtain two inequalities:

1) For constant thermal and force parameters, the use of statically possible stress fields σ∗ij gives the upper
bound of the volume-averaged specific dissipated energy W 0, whereas the use of kinematically possible velocities
v∗i and strain rates η∗ij gives the lower bound

W 0
s >W

0 >W 0
k ; (11)

2) For statically and kinematically possible fields, the rupture time t∗ of a structural material is inversely
proportional to the quantities W 0 “in the average”, and with allowance for (11), we obtain

t∗s 6 t
∗ 6 t∗k. (12)

Below, we consider the results of physical and numerical experiments to estimate the behavior of some typical
structural elements in high-temperature creep and verify the above inequalities.

2. Characteristics of the High-Temperature Creep of the Material Used. An St. 45 iron-based
structural alloy was used in experiments. The material was used in its delivery state, and no thermal treatment
of experimental specimens was performed before and after fabrication. The creep of cylindrical specimens in
uniaxial tension and compression was studied. The specimens had the following dimensions: the working length
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Fig. 1

and diameter were l0 = 37 mm and d0 = 10 mm, respectively, in tension experiments and l0 = 20 mm and d0 =
7 mm in compression experiments. The specimens were loaded by tensile or compressive forces until failure or
buckling occurred, respectively. To ensure constant stresses in the specimen (σ = const) with a 1% change in strain,
we corrected the external load using the condition of plastic incompressibility S0l0 = Sl, where S(t) and l(t) are
the current cross-sectional area and length of the specimen, respectively.

To determine characteristics of the material, we performed experiments for fixed and varied values of σ. The
tests were performed at a temperature T = 725◦C, which was sustained within ±0.5% of the specified value.

We constructed dependences of the dissipated work done by the creep strains A = σε on the time t, where
ε = ln (l(t)/l0). The distinct linear character of the curves allowed us to determine the specific dissipated power
W0 = dA/dt = ση. It was found that the strain rates in tension and compression experiments were very close for
the same σ.

Processing the experimental data, we obtained the following approximating relations of the form [11]:

W = Bσneq, σeq = (3σ0
ijσ

0
ij/2)1/2, σ0

ij = σij − δijσnn/3, B = 3.5 · 10−14, n = 6.22; (13)

W = Dηmeq, ηeq = (2η0
ijη

0
ij/3)1/2, η0

ij = ηij , D = 376.88, m = 1.19. (14)

In (13) and (14), W is in MJ/(m3 · sec), B is in MPa1−n/sec, and D is in MPa · secm−1. One can take into
account the softening stage by writing the above relations in the form

dA

dt
=

(A∗)sBσneq

(A∗ −A)s
or

dA

dt
=

(A∗)sDηmeq

(A∗ −A)s
, (15)

where the experimental values A∗ = 30 MJ/m3 (the energy dissipated by the moment of failure) and s = 0.9 are
used. As A→ 0, relations (15) become (13) and (14). We have σeq = σ and ηeq = η for a bent beam and σeq =

√
3τ

and ηeq = (
√

3/3)γ̇ for a twisted bar (τ is the shear stress and γ is the shear strain). It should be noted that a
neck is formed in specimens for strains ε > 12%, and the softening exponent s in (15) depends on both the material
strength and specimen geometry. Experimental diagrams of deformation of a material, especially in the case of
twisted bars, were usually described by relation (13) without allowance for softening. The long-term strength of
structural elements was determined by relation (15).

The validity of the above relations was verified experimentally under stationary and nonstationary loading.
Figure 1 shows the results of one experiment. Curve 1 refers to the specified relation σ(t), the points to the
experimental relation A(t), and curve 2 to the relation A(t) calculated by (13).

3. Experimental Results on Approximate Estimation of Creep of Typical Structural Elements.
The validity of inequalities (10)–(12) was verified by estimating the intensity of creep of bent beams of rectangular
cross section and twisted cylindrical bars.

The experimental curve of the specific energy A0 = A(t) dissipated in the irreversible deformation of a
rectangular beam bent by a constant moment M = const was determined by the formula A0 = Mϕ/V , where the
angle of rotation of the end cross sections of the beam ϕ was calculated by the approximate formula ϕ = 8∆/L,
in which L = 100 mm is the working length of the beam and ∆ is the experimentally measured deflection of the
beam. Finally, we obtain A0 = 8M∆/(bhL2), where b and h are the width and height of the beam, respectively.
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TABLE 1

p M∗s , N ·m d M∗k , N ·m

0 25.7 0 25.7
0.2 26.6 0.2 26.4
0.7 24.9 1.0 26.6
1.0 23.5 3.3 25.5

TABLE 2

p M∗∗s , N ·m d M∗∗k , N ·m

0 52.4 0 52.4
0.5 52.2 1.0 53.1
1.0 49.3 5.0 49.6

For cylindrical bars twisted by a constant torque M = const, we obtain A0 = Mϕ/(πR2L), where the twist
angle ϕ over the working length L was measured directly in experiments.

As in the case of uniaxial processes with a uniform stress–strain state, the curves A0 = A(t) are characterized
by a weakly pronounced section corresponding to the initial unsteady stage; most of the time, the process occurred in
accordance with laws of viscous flow without hardening and softening, which allowed us to determine the dissipated
power W0 = dA/dt averaged over the volume of the body. We performed two series of experiments: under stationary
thermal and force conditions (T = 725◦C and M = const) and for arbitrarily varied values of M = M(t).

Estimate of the Creep Intensity for a Constant Moment. We consider the statically possible stress fields in
the beam σ(z) = σ0(2z/h)p for p > 0, where σ0 is the stress in the extreme fibers of the beam for z = h/2 (it is
assumed that the behavior of the material in tension and compression is the same). By virtue of symmetry, the
distribution of σ(z) ensures a zero axial force for any p. Further, we require that the average dissipated power be
constant for any p, i.e., W0 = const. From (13), we obtain

W0 =
1
V

∫
V

Bσneq dV =
2
h

h/2∫
0

B
[
σ0

(2z
h

)p]n
dz =

Bσn0
pn+ 1

.

Given the value of W0, we determine σ0 and distribution of σ(z) over the cross section for any p. It remains to

satisfy the last condition of equilibrium M =
∫
S

σ(z)z dS, which relates the external moment to p for different

statically possible stress fields. For σ(z) given at every point over the beam height, one determines W (z) and
η(z) = W (z)/σ(z) using (13).

Similarly, we consider the kinematically possible strain-rate fields η(z) = η0(2z/h)d for d > 0. For an
arbitrary d, the strain-rate compatibility condition may fail, which requires the introduction of shear velocities and
the associated shear stresses. Within the approximate estimates, we assume that their contribution to the power W0

is small compared to the contribution of the longitudinal strain rate η(z), i.e., ηeq = η(z). Inserting η(z) into (14),
we obtain

W0 =
1
V

∫
V

Dηmeq dV =
Dηm0
dm+ 1

.

As in the previous case, we determine η0 and η(z) for a given value of W0 and an arbitrary d. Using (14), we find
the distribution W (z) over the beam height and σ(z) = W (z)/η(z).

As was stated previously, for different values of p and d, the z∗-coordinates of the point, where the condition
B[σ(z∗)]n = D[η(z∗)]m = W0 holds with allowance for (13) and (14), are different. Therefore, it makes no sense to
talk of a characteristic physical point.

The estimates of the bending moments for the above-considered cases as functions of p and d are listed
in Table 1. These results were compared with experimental data for a beam (b = 9.96 mm, h = 19.98 mm,
L = 100 mm, and M = 25.83 N ·m). It was found experimentally that W0 = 2.08 · 10−5 MJ/(m3 · sec). With
allowance for scatter of experimental data and the fact that relations (13) and (14) are approximate within the
indicated intervals of p and d, inequality (10) holds satisfactorily, and the deviation of the calculated values of M∗s
and M∗k from the experimental value M = 25.83 N ·m does not exceed several percent.

Similar results were obtained for a cylindrical bar twisted by the torque M . Statically possible stress fields
were taken in the form σeq = σ0(r/R)p, where σ0 =

√
3τ0. Substituting σeq into (13) and integrating over the

working volume of the bar, after averaging we obtain W0 = 2Bσn0 /(np + 2). Specifying W0 for any p, we find σ0,

σeq(r), W (r), ηeq(r) = W (r)/σeq(r), and M∗∗s =
∫
S

τr dS = 2πσ0R
3/(
√

3(p+ 3)).
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Fig. 2

Fig. 3

For kinematically possible strain-rate fields, we assume that ηeq = η0(r/R)d and η0 = (
√

3/3)γ̇0. Using (14),
after integration and averaging, we obtain W0 = 2Dηm0 /(md + 2). For specified W0 and an arbitrary exponent d,
we find η0, ηeq(r), W (r), σeq(r) = W (r)/ηeq(r), and M∗∗k .

Table 2 lists M∗∗s and M∗∗k as functions of p and d. The results were compared with experimental data
(R = 10 mm, L = 37 mm, and M = 53.15 N ·m). It was found experimentally that W0 = 5.13 · 10−4 MJ/(m3 · sec).
As in the case of bending, the calculation results differ from the experimental data by several percent.

The experimental data for bending and torsion show that relations (11) and (12) can be used to estimate
the intensity of creep and rupture time of bent beams and twisted bars.

Let the temperature and the bending moment M be specified and constant. The experimental curve of the
dissipated energy A0 = 8M∆/(bhL2) has already been constructed. We consider an arbitrary statically possible
stress field σ = σ(z) determined by the specified moment M . Inserting σ(z) into (13), integrating, and averaging
over the working volume of the beam, we find W0. Confining our attention to the steady creep stage (without
consideration of the third stage), we obtain the relationA(t) = W0t and compare it with the experiment. Considering
kinematically possible strain rates and assuming that the distribution of strain rates through the height of the
beam is linear, we obtain η(z) = æ̇z, where æ = 8z∆/L2 is the beam curvature and the quantity ∆ is determined
experimentally. Substitution of η(z) into (14), integration, and averaging over the volume yield W0 and A0(t) = W0t.

Figure 2 shows the results of two experiments on bending of beams for b1 = 19.85 mm, h1 = 9.85 mm, and
M1 = 21.32 N ·m (Fig. 2a) and b2 = 9.87 mm, h2 = 19.84 mm, and M2 = 25.53 N · m (Fig. 2b). The points
correspond to the experimental relations A0 = A(t). Curves 1 refer to the relations A(1)

0 = W
(1)
0 t, where W (1)

0 is
calculated for the statically possible field that corresponds to the elastic distribution of σ(z) and does not change
during creep. Curves 2 refer to the values of W (2)

0 calculated for the statically possible field σ(z) = const in the
ideally plastic case; curves 3 refer to the values of W (3)

0 calculated for the kinematically possible strain rates η(z)
distributed linearly over the height of the beam. These results agree well with the approximate estimates (11).

The same result was obtained in experiments on twisted cylindrical bars. In Fig. 3, the points refer to the
experimental dependences A0 = Mϕ/V obtained for specimens with the parameters R1 = 10 mm, L1 = 37.59 mm,
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Fig. 4

and M1 = 60.37 N · m, R2 = 10 mm, L2 = 47.5 mm, and M2 = 53.2 N · m, and R3 = 10 mm, L3 = 47.5 mm,
and M3 = 48.3 N ·m. As in the case of beams, the approximate values of A0 = A(t) were calculated for statically
possible stresses and strain rates. As statically possible stresses, we used the stresses σeq = σ0(r/R) and σeq = const
corresponding to the elastic and limit states, respectively. Given M , we find σeq(r) and W0, which are assumed
to be unchanged from the beginning of creep to failure. The solid curves in Fig. 3 correspond to the theoretical
dependences A = W0t for the stress fields σeq = const, where W0 was determined from (15).

As a whole, the experimental data on creep of bent beams and twisted bars under stationary external thermal
and force conditions support estimates (10)–(12). To describe the creep, one can use the statically possible stress
field corresponding to an ideal plastic body (“ideal creep body” according to the terminology of [8]).

Estimate of the Creep Intensity for Varying Moment. The above dependences were obtained under the
assumption of stationary external conditions. However, they can also be used in the case of slowly varying ex-
ternal loads and temperature. At high temperatures, the relaxation time τ∗, i.e., the time it takes for internal
thermodynamic parameters to pass to an equilibrium state, is small. If the process is divided into time intervals
∆ti for which τ∗ � ∆ti, the above-considered dependences are valid within each interval. This assumption is
supported by experiments on bent beams and twisted continuous cylindrical bars subjected to time-varying mo-
ments at a constant temperature. Figure 4 shows the results of one of these experiments. A continuous cylindrical
bar with working length L = 39 mm and radius R = 10 mm was twisted by a torque that varied in a stepwise
manner with ∆ti ≈ 20 min (except for ∆t4 ≈ 10 min). The torques were as follows: M1 = M7 = 48.4 N · m,
M2 = M6 = M8 = 60.5 N ·m, M3 = M5 = 72.5 N ·m, and M4 = 84.6 N ·m. The points refer to the experimental
dependence A = A(t), and the arrows indicate the overload time. The total dissipated energy in the experiment

was determined as A =
8∑
i=1

Miϕi. The average dissipated power W0 at each interval ∆ti for fixed moments was

calculated from relation (13), in which the stress field corresponding to the limit state (for an ideal creep body) was
used as a statically possible stress field. For the values of torque Mi considered, the equivalent stresses σeq =

√
3τ

were σ1 = σ7 = 40 MPa, σ2 = σ6 = σ8 = 50 MPa, σ3 = σ5 = 60 MPa, and σ4 = 70 MPa. The solid curve in

Fig. 4 shows the theoretical dependences A(t) determined as a sum A =
8∑
i=1

W i
0∆ti. As in the stationary case, the

use of statically possible stresses in calculations yields overestimated values of the dissipated power compared to
experimental data but, as a whole, satisfactorily describes the deformation.

It is noteworthy that the slopes of experimental curves are almost the same in the intervals ∆ti where the
moments Mi are equal. This supports the validity of the above-adopted assumptions of a small relaxation time of
a material τ∗, fast transition from a perturbed state caused by overload to an equilibrium state, and applicability
of the above estimates to nonstationary processes.

4. Estimate of the Rupture Time of Structural Elements in High-Temperature Creep. We
consider a pipe with clamped ends (εz = 0). The ratio of the inner radius to the outer radius is R1/R2 = 0.5.
The internal pressure is P = 34 MPa, and the external pressure is absent. The pipe is made of St. 45 steel, and
the operating temperature is T = 725◦C, i.e., the characteristics of the material are identical to those described
above [see (13)–(15)]. We consider some statically possible stress fields, calculate the corresponding dependence
A0 = A(t), estimate the rupture time t∗i , and compare the results with the solution of the creep equations.
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Fig. 5

1. We consider the stress field corresponding to the elastic solution as a statically possible stress field and
assume that the stresses σr and σθ remain unchanged up to failure. Setting Poisson’s ratio to be ν = 0.5 and using
the boundary conditions, we obtain the following relations [12]:

σr =
PR2

1

R2
2 −R2

1

− PR2
2R

2
1

r2(R2
2 −R2

1)
, σθ =

PR2
1

R2
2 −R2

1

+
PR2

2R
2
1

r2(R2
2 −R2

1)
,

(16)

σz =
1
2

(σr + σθ), σeq =
√

3
2

(σθ − σr) =
√

3
PR2

1R
2
2

r2(R2
2 −R2

1)
.

Substituting (16) into the formulaW0 =
1
V

∫
V

Bσneq dV , we findW0 and, from (15), determine the relation A0 = A(t),

which yields t∗1 = 3.16 h for A0 = A∗ = 30 MJ/m3. Figure 5 shows the dependence A0 = A(t) corresponding to
this statically possible stress–strain state (curve 1).

2. We use the limit stress field corresponding to the case of an ideal plastic body as a statically possible
stress field. In this case, the stresses have the form [12]

σr =
2√
3
σ0 ln

r

R2
, σθ =

2√
3
σ0

(
ln

r

R2
+ 1
)
, σz =

1
2

(σr + σθ),

σeq =
√

3
2

(σθ − σr) =
2√
3
σ0, σ0 =

√
3P (2 ln 2).

We find W0 =
1
V

∫
V

Bσneq dV . From (15), we determine the relation A0 = A(t) (curve 2 in Fig. 5), which yields

t∗2 = 9.2 h for A0 = A∗.
3. As the statically possible stress field σr, σθ, σz, we take the field corresponding to the “steady-state”

solution and assume that these stresses remain unchanged from the beginning of creep to failure. After simple
manipulations, we express σeq in the form [8]

σeq =
√

3P
(n− 1)(41/(n−1) − 1)

( r

R2

)−2/(n−1)

.

As previously, we calculate W0. From (15), we determine A0 = A(t) and t∗3 = 10.1 h (curve 3 in Fig. 5).
4. Considering the problem of unsteady creep of a pipe loaded by an internal pressure p, from the equations

of strain compatibility and equilibrium, we obtain [13]

∂σr
∂x

=
σϕ − σr

x
,

∂σϕ
∂x

= −∂σr
∂x
− E

1− ν2

εcϕ − εcr
x

+
νE

1− ν2

∂εcr
∂x
− E

1 + ν

∂εcϕ
∂x

.

This system supplemented by the conditions σr(R1) = −p and σr(R2) = 0 is a boundary-value problem for
determining the stresses σr(r) and σϕ(r) for known creep strains εcr and εcϕ and their derivatives at each point of
the pipe at a certain moment t.
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Combining the condition of proportionality between the stress deviators and creep strain rates and the
equation of state in the energy form, we obtain a system of equations for determining the creep strains and specific
dissipated work at each point of the pipe for the known stresses:

∂A

∂t
=

Bσneq

(A∗ −A)m
,

∂εcr
∂t

=
∂A

∂t

2σr − σϕ − σz
2σ2

eq

,
∂εcϕ
∂t

=
∂A

∂t

2σϕ − σr − σz
2σ2

eq

,

t = 0, A = εcϕ = εcr = 0.

The problem was solved by an iterative method. In each iteration, the stress distributions σr(r) and σϕ(r) were
determined by the shooting method for the boundary value of the radial stress using the strains calculated in the
previous iteration. Then, the strain field was determined at the next time step. Curve 4 in Fig. 5 shows the
dependence A0 = A(t) obtained by direct numerical calculations. For A = A∗, the rupture time is t∗4 = 11 h. The
time of redistribution of the initial stress to the steady stress is 10 min, which is less than 2% of the duration of
creep before failure.

Conclusions. The results of physical and numerical experiments can be summarized as follows:
1. The proposed approximate estimates of the intensity of processes of high-temperature creep and long-term

strength of structural elements are in good agreement with experimental data.
2. The stress fields corresponding to the limit state of an ideal plastic body (or an ideal creep body) can be

used as an approximate stress–strain state to estimate these processes.
3. In view of rapid distortion of twisted thin-walled tubular specimens in experiments, it is recommended

to use thick-walled or even continuous specimens or specimens with a very small central axial channel to determine
the shear characteristics of high-temperature creep. At high temperatures, experimental results obtained for thick-
and thin-walled specimens are close.

This work was supported by the Russian Foundation for Fundamental Research (Grant Nos. 98-01-03693,
99-01-00526, and 00-15-96180).
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